CSIR Central

Arthrospira sp. mediated bioremediation of gray water in ceramic membrane based photobioreactor: process optimization by response surface methodology

IR@CGCRI: CSIR-Central Glass and Ceramic Research Institute, Kolkata

View Archive Info
 
 
Field Value
 
Title Arthrospira sp. mediated bioremediation of gray water in ceramic membrane based photobioreactor: process optimization by response surface methodology
 
Creator Mukhopadhyay, Shritama
Jana, Animesh
Ghosh, Sourja
Majumdar, Swachchha
Ghosh, Tapan Kumar
 
Subject Engineering Materials
 
Description Novelty statement The study elucidated the application of indigenously designed and devised ceramic membranes in an algal photobioreactor for viable production of Arthrospira sp. employing gray water, aided by photosynthetic CO2 sequestration and microalgal biorefinery. A highly encouraging result was achieved in the microalgal process under optimized culture conditions with >95% removal of organics. It may be stressed here that the process ran effectively without any elaborate arrangement of external aeration, thereby reducing the investment and operating costs to the minimum. Direct discharge of raw domestic sewage enriched with nitrogenous and phosphorous compounds into the water bodies causes eutrophication and other environmental hazards with detrimental impacts on public and ecosystem health. The present study focuses on phycoremediation of gray water with Arthrospira sp. using an innovative hydrophobic ceramic membrane-based photobioreactor system integrated with CO2 biofixation and biodiesel production, aiming for green technology development. Surfactant and oil-rich gray water collected from the domestic kitchen was used wherein, chloride, sulfate, and surfactant concentrations were statistically optimized using response surface methodology (RSM), considering maximum microalgal growth rate as a response for the design. Ideal concentrations (mg/L) of working parameters were found to be 7.91 (sulfate), 880.49 (chloride), and 144.02 (surfactant), respectively to achieve optimum growth rate of 0.43 g(dwt)/L/day. Enhancement of growth rate of targeted microalgae by 150% with suitable CO2 (19.5%) supply and illumination in the photobioreactor affirms its efficient operation. Additionally, harvested microalgal biomass obtained from the process showed a biodiesel content of around 5.33% (dry weight). The microalgal treatment enabled about 96.82, 87.5, and 99.8% reductions in BOD, COD, and TOC, respectively, indicating the potential of the process in pollutant assimilation and recycling of such wastewater along with value-added product generation.
 
Publisher Taylor & Francis
 
Date 2022-11
 
Type Article
PeerReviewed
 
Identifier Mukhopadhyay, Shritama and Jana, Animesh and Ghosh, Sourja and Majumdar, Swachchha and Ghosh, Tapan Kumar (2022) Arthrospira sp. mediated bioremediation of gray water in ceramic membrane based photobioreactor: process optimization by response surface methodology. International Journal of Phytoremediation, 24 (13). pp. 1364-1375. ISSN 1522-6514
 
Relation http://cgcri.csircentral.net/5488/